An observation campaign of precipitable water vapor with multiple GPS receivers in western Java, Indonesia

نویسندگان

  • Eugenio Realini
  • Kazutoshi Sato
  • Toshitaka Tsuda
چکیده

A campaign was conducted from 23 July to 5 August 2010 to measure atmospheric precipitable water vapor (PWV) using five Global Positioning System (GPS) receivers, stationed at four different locations in Jakarta and Bogor, western Java, Indonesia. Radiosondes were launched at an interval of 6 h to validate the GPS-derived PWV data. The validation resulted in a root mean square error of 2 to 3 mm in PWV. The influence of atmospheric pressure and temperature on GPS-derived PWV was evaluated. A regular semi-diurnal pressure oscillation was observed, showing an amplitude ranging from 3 to 5 hPa, which corresponds to 1.1 to 1.8 mm in PWV. A nocturnal temperature inversion layer was observed in the radiosonde profiles, which resulted in an error of about 0.5 mm in PWV. From 26 to 29 July, there was a passage of distributed rain clouds over western Java, moving southwestward from the equator toward the Indian Ocean. A second precipitation event, with scattered rain clouds forming locally near Bogor, occurred on 2 August. Both events were observed also by a C-band Doppler Radar operated near Jakarta. The highest peak of GPS-derived PWV (about 67 mm) registered during the campaign occurred on 27 July, coinciding with the distributed rainfall event. Spatial variations in the estimated PWV between the four sites were enhanced before both the analyzed rainfall events, on 27 July and 2 August. Peaks in the temporal variability of PWV were also observed in conjunction with the two events. The results indicated a relation between the space-time inhomogeneity of GPS-PWV and rainfall events in the tropics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Westford Water Vapor Experiment: Use of GPS to Determine Total Precipitable Water Vapor

The Westford WAter Vapor Experiment (WWAVE) was designed to measure the temporal and spatial variability of the total precipitable water vapor over an area within a 25 km radius of the Haystack Observatory in Westford, MA. The main experiment was conducted from August 15 to August 30, 1995, and a variety of different techniques were used to measure the water vapor, including: radiosondes, launc...

متن کامل

Estimation and Analysis of Precipitable Water Vapor Using GPS Data and Satellite Altimeter

Determination of water vapor in the atmosphere plays an important role in forecasting weather conditions and precipitation studies. For this reason, it is very important to study the tropospheric delay, especially the wet component, which is due to the presence of water vapor in the atmosphere. In this paper, the amount of water vapor was estimated by altimeter satellite radiometer and GPS data...

متن کامل

Measurements of Precipitable Water Vapor by GPS, Radiosondes, and a Microwave Water Vapor Radiometer

Results from the Westford WAter Vapor Experiment (WWAVE) will be discussed. This experiment was designed to measure the temporal and spatial variability of the total precipitable water vapor (PWV) over an area of roughly 25 km radius around the Haystack Observatory in Westford, MA. The main experiment was conducted from August 15 to August 30, 1995, and a variety of techniques were used to meas...

متن کامل

GPS Tomography and Remote Sensing Techniques for Water Vapor Determination in the ESCOMPTE Campaign

The comparison of the integrated precipitable water vapor (IPWV) retrieved by GPS, microwave radiometer, solar spectrometer and radiosondes, operated within the French field campaign ESCOMPTE, shows an overall good agreement. The time dependent relative fluctuation as well as the absolute amount of water vapor match with high accuracy. The software package AWATOS (Atmospheric WAter vapor TOmogr...

متن کامل

Determination of Zenith Tropospheric Delay and Precipitable Water Vapor Using Gps Technology

In order to be able to be process GPS data, the GPS signal it has to pass the entire terrestrial atmosphere – both neutral atmosphere and ionosphere – which may cause an alteration of the GPS receiver to perform, resulting in large errors in the final position estimate. The dual frequency GPS receivers are affected by the influence of the atmosphere, especially by the troposphere. To estimate t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014